\pdfoutput=1 \documentclass[11pt]{article} \usepackage{times} \usepackage{latexsym} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{microtype} \usepackage{inconsolata} \usepackage{bussproofs} \usepackage{amsmath} \usepackage{amssymb, mathrsfs} \usepackage{tikz} \usepackage{pgfplots} \usepackage{subcaption} \usepackage{tikz-dependency} \pgfplotsset{compat=1.17} \usetikzlibrary{positioning} \newcommand{\singleprop}{s_{p}} \newcommand{\singlepred}{s_{q}} \newcommand{\grouppred}{g_{q}} \newcommand{\groupprop}{g_{p}} \newcommand{\inference}{\ell_{gsr}} \newcommand{\singlepropi}[1]{s_{p,#1}} \newcommand{\implicationpred}{(g_p, s_p, (r_g, r_p))} \newcommand{\backlinks}{\textsc{backward}_\Phi} \newcommand{\forwardlinks}{\textsc{forward}_\Phi} \newcommand{\propgraph}{\Phi} \newcommand{\propgraphs}{\Phi(\singleprop)} \newcommand{\fnname}{\mathscr{F}} \newcommand{\argset}{\mathcal{A}} \newcommand{\argmap}{\left\{(r, a)\right\}} \newcommand{\andsign}{\textbf{\em and}} \newcommand{\orsign}{\textsc{Or}} \newcommand{\constant}[1]{{\bf c}_{#1}} \newcommand{\variable}[1]{{\bf x}_{#1}} \newcommand{\type}[1]{\tau_{#1}} \newcommand{\xvariable}{{\bf x}} \newcommand{\zvariable}{{\bf z}} \newcommand{\pconstant}{{\bf p}} \newcommand{\pvariable}{{\bf p}} \newcommand{\qvariable}{{\bf q}} \newcommand{\gvariable}{{\bf g}} \newcommand{\wvariable}{{\bf w}} \newcommand{\condsep}{\ |\ } \newcommand{\varmask}{\textsc{mask}} \newcommand{\roleset}{\left\{r_s\right\}} \newcommand{\rolemap}{\left\{r_a, r_c\right\}} \newcommand{\xjack}{\xvariable_{jack}} \newcommand{\xjill}{\xvariable_{jill}} \newcommand{\opand}{\textbf{\em and}} \newcommand{\opor}{\textbf{\em or}} \newcommand{\opxor}{\textbf{\em xor}} \newcommand{\psiall}{\Psi_\forall} \newcommand{\psiand}{\Psi_\opand} \newcommand{\psior}{\Psi_\opor} \newcommand{\subj}{\textsc{subj}} \newcommand{\dobj}{\textsc{dobj}} \newcommand{\iobj}{\textsc{iobj}} \title{\bf The Quantified Boolean Bayesian Network \\ \textmd{Theory and Experiments} \thanks{The author acknowledges the use of {\em ChatGPT} in the preparation of this work, for research, review and the production of many equations.} } \author{ {\Large Greg Coppola} \\ {\em coppola.ai} \\ Research. Develop. Meme. } \date{\today} \begin{document} \maketitle \section{Contributions} We introduce the {\bf Quantified Boolean Bayesian Network}, {\em QBBN} for short, a model from the {\em Bayesian Network} family, constructed and analyzed to provide a {\em unified view} of {\em logical} and {\em statistical} {\em reasoning}. In particular, our work makes the following contributions: \begin{itemize} \item {\bf Unified Model of Logical and Probabilistic Reasoning} \\ We provide a single data structure, the {\em QBBN}, which can both: \begin{itemize} \item {\em reason probabilistically}, and answer {\em probabilistic queries} \item support arbitrarily complex {\em logical reasoning}, by fitting into a larger {\em consistent} and {\em complete} {\em logical deduction system} \end{itemize} We achieve this by integrating the {\em Bayesian Network}, a {\em graphical statistical model}, into the {\em natural deduction calculus} \cite{PrawitzNaturalDeduction} from {\em formal logic} to provide a {\em complete} and {\em consistent} calculus, of which the {\em QBBN} forms a precisely defined part. \item {\bf A Generative Model Without Hallucinations} \\ The {\em QBBN} shows how to create a {\em generative} model of the ({\em latent logical forms} underlying) unlabeled text. Like the {\em large language model} \cite{Bahdanau2014NeuralMT, vaswani2017attention, radford2018improving}, the {\em QBBN} it is generative, and so can be used to {\em compress} the data \cite{SutskeverObservation}. But, the {\em QBBN} does {\em not} {\em hallucinate}. It reasons consistently (i.e., ensuring that $P(x) + P(\neg x) = 1$ for all questions $x$), and can {\em explain} its reasoning in terms of {\em causality}, like any Bayesian Network can. \item {\bf Very Efficient Bayesian Inference} \\ In general, inference in a Bayesian Network is intractable, i.e. $\Omega(2^N)$ for $N$ random variables. Our division of Bayesian Network nodes into \opand\ and \opor\ {\em boolean gates}, along with our use of approximate {\em iterative belief propagation} means that {\em inference} can now be not only tractable, but {\em very efficient}, with one full pass of approximate belief propagation requiring time $O(Nn)$, where $N$ is the number of variables, and $n$ is the maximum incoming connections in an \opor\ gate. (However, the convergence of {\em iterative belief propagation} must be studied further.) \item {\bf Fast Versus Slow Thinking} \\ We give, to our knowledge, the first mathematical {\em explanation} of the distinction between what has come to be known as {\em fast} versus {\em slow} thinking \cite{Kahneman2011ThinkingFast}. This explanation is based on {\em proof theory} of the {\em natural deduction calculus}, and accords both with our graphical formulation, as well human experience. As a special case of general reasoning, we analyze {\em planning}. \item {\bf Calculus Over Dependency Trees} \\ Empirically, {\em labeled dependnecy trees} are the easiest {\em syntactic formalism} to parse to. Traditionally, parsing language to a {\em complete} and {\em consistent} calculus required using the {\em first-order logic} calculus \cite{Steedman1996}, but this translation adds complexity, e.g. by requiring additional {\em syntactic structure}, to implementation, inference and learning. We show how complete and consistent deduction can be done directly over labeled dependency trees, to avoid the translation to {\em first-order logic}, and so vastly simplify both learning and inference pipelines. \end{itemize} \begin{thebibliography}{} \bibitem[Bahdanau et~al., 2014]{Bahdanau2014NeuralMT} Bahdanau, D., Cho, K., and Bengio, Y. (2014). \newblock Neural machine translation by jointly learning to align and translate. \newblock {\em CoRR}, abs/1409.0473. \bibitem[Kahneman, 2011]{Kahneman2011ThinkingFast} Kahneman, D. (2011). \newblock {\em Thinking, Fast and Slow}. \newblock Farrar, Straus and Giroux, New York. \bibitem[Prawitz, 1965]{PrawitzNaturalDeduction} Prawitz, D. (1965). \newblock {\em Natural Deduction: A Proof-Theoretical Study}. \newblock Stockholm Studies in Philosophy 3. Almqvist \& Wiksell, Stockholm; Göteborg; Uppsala. \newblock Acta Universitatis Stockholmiensis. \bibitem[Radford et~al., 2018]{radford2018improving} Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). \newblock Improving language understanding by generative pre-training. \bibitem[Steedman, 1996]{Steedman1996} Steedman, M. (1996). \newblock {\em Surface Structure and Interpretation}. \newblock The MIT Press. \bibitem[Sutskever, 2023]{SutskeverObservation} Sutskever, I. (2023). \newblock An observation on generalization. \newblock YouTube video. \newblock Accessed: 2024-01-29. \bibitem[Vaswani et~al., 2017]{vaswani2017attention} Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.~N., Kaiser, L., and Polosukhin, I. (2017). \newblock Attention is all you need. \newblock In {\em Advances in Neural Information Processing Systems}, volume~30. \end{thebibliography} \end{document}