// maxent.js BAYES STAR (c) coppola.ai const mongoose = require("mongoose") const models = require("./models") const weightSchema = new mongoose.Schema({ feature: { type: String, required: true }, weight: { type: Number, required: true }, }) const WeightRecord = mongoose.model('Weight', weightSchema); function RandomWeight() { return (Math.random() - Math.random()) / 5 } function PositiveFeature(feature) { return '+++' + feature + '+++' } function NegativeFeature(feature) { return '---' + feature + '---' } async function InitializeWeights(implication) { const weight = RandomWeight() const feature = implication.UniqueKey() const pwr = WeightRecord({ feature: PositiveFeature(feature), weight }) await pwr.save() const nwr = WeightRecord({ feature: NegativeFeature(feature), weight }) await nwr.save() } async function GetPropositionProbability(searchString) { const record = await models.PropositionRecord.find({ searchString }) const r = record[0].probability return r } function Sigmoid(x) { return 1 / (1 + Math.exp(-x)); } function DotProduct(dict1, dict2) { let result = 0; for (const key of Object.keys(dict1)) { const v1 = dict1[key] const v2 = dict2[key] if (v1 == null || v2 == null) { } else { result += v1 * v2 } } return result; } async function FeaturesFromBacklinks(backlinks) { var result = {} for (var i = 0; i < backlinks.length; i++) { const backlink = backlinks[i] const feature = backlink.implication.UniqueKey() const searchString = backlink.proposition.SearchString() const probability = await GetPropositionProbability(searchString) result[PositiveFeature(feature)] = probability result[NegativeFeature(feature)] = 1 - probability } return result } function ComputeProbability(weights, features) { const dot = DotProduct(weights, features); const probability = Sigmoid(dot); return probability; } async function ReadWeights(features) { var r = {} for (const feature of Object.keys(features)) { const record = await WeightRecord.findOne({ feature }) if (record) { r[feature] = record.weight } } return r } async function SaveWeights(weights) { for (const feature of Object.keys(weights)) { const updated = await WeightRecord.findOneAndUpdate({ feature }, { weight: weights[feature] }, { new: true, runValidators: true }); } } function ComputeExpectedFeatures(probability, features) { let r = {}; for (let key in features) { r[key] = features[key] * probability; } return r; } const LEARNING_RATE = 0.1 function DoSGDUpdate(weights, goldFeatures, expectedFeatures) { var r = {} for (const feature of Object.keys(weights)) { const wv = weights[feature] const gv = goldFeatures[feature] const ev = expectedFeatures[feature] const newWeight = wv + LEARNING_RATE * (gv - ev) console.log({ feature, wv, gv, ev, newWeight }, DoSGDUpdate) r[feature] = newWeight } return r } async function TrainOnExample(proposition, backlinks) { const features = await FeaturesFromBacklinks(backlinks) const weightVector = await ReadWeights(features) const probability = ComputeProbability(weightVector, features); const expected = ComputeExpectedFeatures(probability, features) const newWeight = DoSGDUpdate(weightVector, features, expected) await SaveWeights(newWeight) } async function DumpWeights() { const records = await WeightRecord.find({}) console.log({ records }, DumpWeights) } module.exports = { InitializeWeights, TrainOnExample, DumpWeights }